
Improved Message logging versus Improved coordinated checkpointing
for fault tolerant MPI

Pierre Lemarinier Aurelien, Bouteiller Thomas Herault Geraud Krawezik
Franck Cappello

LRI, Universiti de Paris Sud, Orsay, France
E-mail: {lemarini, bouteill, herault, gk,fci}Qlri.fr

Abstract

Fault tolerance is a very imporiant concern for critical
high performance applications using the MPI library Sev-
eral protocols provide automatic and transparent fault de-
tection and recovery for message passing systems with dif-
ferent impact on application performance and the capaciiy
to tolerate a high fault rate. In a recent papec we have
demonstrated that the main differences between pessimistic
sender based message logging and coordinated checkpoint-
ing are I) the communication latency and 2) the perfor-
mance penalry in case of faults. Pessimistic message log-
ging increases the latency, due to additional blocking con-
trol messages. When faults occur at a high rate, coordinated
checkpointing implies a higher performance penalty than
message logging due to a higher stress on the checkpoint
semeI: In this paper we extend this study to improved ver-
sions of message logging and coordinated checkpoint pro-
tocols which respectively reduces the latency overhead of
pessimistic message logging and the semer stress of coor-
dinated checkpoint. We detail the protocols and their im-
plementation into the new MPICH-V fault tolerant frame-
work, We compare their performance against the previous
versions and we compare the novel message logging pro-
tocols against the improved coordinated checkpointing one
using the NAS benchmark on a rypical high performance
cluster equipped with a high speed neiwork. The contribu-
tion of this paper is iwo folds: a) an original message log-
ging protocol and an improved coordinated checkpointing
protocol and b) the comparison between them.

Keywords: Fault tolerant MPI, coordinated checkpoint,
message log, high speed networks, performance.

1 Introduction

A current trend in clusters is nn increasing number of
processors installed in clusters over the time [6]. As a con-

sequence, clusters with hundreds or thousands of processors
will become more and more common. Large clusters are
under construction like the Sandia Red Storm with 10,368
processors. In such a cluster, hardware and software fail-
ures are not rare [4]. Even strong selection of the cluster
components cannot avoid failures.

Another current trend is the use of MPI as message pass-
ing environment for high performance parallel applications.
MPI in its specification and most deployed implementations
(MPICH[13] and LAMMPI[7]) follows the fa i l stop- se-
mantic (specification and implementations do not provide
mechanisms for fault detection and recovery) [20]. Thus,
MPI applications running on a large cluster may be stopped
at any time during their execution due to an unpredictable
failure.

The consequences of a failure may he very significant
due to the loss of hours of computation. Some clusters are
used for critical applications where the crash of the appli-
cation may simply preclude delivering the result on time.
Failures may also he the origin of massive waste of energy.
For example, an application running on 500 CPUs that stops
after 15 hours of computation because one component of the
system has failed, wastes about the equivalent of 1 year of
sequential computation. While the waste of hours of com-
putation might be acceptable once, the uncertainty raised
by the impossibility to guaranty that the same application
will not encounter another failure during its reexecution is
unacceptable for many users.

These risks have recently reactivated the research in the
domain of fault tolerant MPI. Several research projects are
investigating fault tolerance at different levels: network
[I81 , system [5] , applications [I I]. Different strategies
have been proposed to implement fault tolerance in MPI:
a) user/programmer detection and management, b) pseudo
automatic guided by the programmer and c) fully auto-
maticltransparent. For the last category, several protocols
have been discussed in the literature. Thus for the user and
system administrator, there is a choice not only among a va-
riety of fault tolcrance approaches but also among various

0-7803-86Y4-Y/04/$20.00 02004 IEEE 1 I5 CLUSTER 2004

http://gk,fci}Qlri.fr

fault tolcrance protocols.
Dcspite fault tolerancc in distributed system has a long

history of researches, there are very few comparisons be-
tween protocols for the fully automatic and transparent ap-
proach. In a recent study, we have compared the merits of
uncoordinated checkpointing based on pessimistic message
logging and coordinated checkpointing based on a Chandy-
Lamport like algorithm [6]. Pessimistic message logging
adds an overhead evcn on fault free executions. Coordi-
nated checkpoint implies the restart of all processes if a
failure occurs during the execution, leading to a high stress
of the checkpoint repository process. Using an experimen-
tal study, we demonstrated that the main differentiating pa-
rameter between the two approaches is the fault frequency:
when the number of faults during a singlc execution in-
creases, the restart cost of the coordinated checkpoint ap-
proach tends to compensate the overhead of the message
logging one. There is a crosspoint from which the message
logging approach outperforms the coordinated checkpoint
one.

In this paper, we push forward this comparison between
the two forms of fault tolerant protocols by comparing im-
proved version of the two approaches. Namely, we compare
a version of coordinated checkpoint strongly reducing the
stress of the process checkpoint repository on restart and a
version of message logging protocol based on a novel causal
strategy strongly reducing the overhead of this approach.
Thus the contribution of this paper is two folds: improved
versions of well known protocols and a comparison between
the two candidate approaches.

The paper is organized as following. The second part of
the paper presents the related works highlighting the origi-
nality of this work. The third part presents a new organiza-
tion of our fault tolerant protocol framework (an improved
version compared to the one presented in [6]). Section 4
presents experiments to validate the new framework, study
the performance the two improved protocols using NAS
benchmarks, and compare them against previous versions.
The final section concludes and presents future works.

2 Related work

Several projects are working on implementing a fault tol-
erant MPI using different strategies. An overview can be
found in [121.

A first method consists in non automatic fault tolerant
protocols such as FI-MPI [111. Special instructions have
then to be introduced in the MPI code in order to exploit
the error retumed by MPI instructions on failure detection.
In this study we concentrate only on automatic and transpar-
ent fault tolerant protocols providing fault tolerance without
any change of the MPI application code.

Global checkpointing and message logging protocol are

well known automatic and transparent fault tolerance tech-
niqucs. Nevertheless few comparisons exist between these
two methods. Extended descriptions of these techniques
can bc found in [IO].

Global checkpointing consists in taking a coherent snap-
shot of the system at a time. A snapshot is a collection
of checkpoint images (one per process) with each channel
state, A snapshot is said to he coherent if for all messages
m from P, to P,, if the checkpaint on PI has been made
after reception of m then checkpoint on Pi has been made
after emission of m. For our global checkpoint protocol im-
plementation, we use the Chandy-Lamport algorithm [SI.

LAMMPI [7] is one of the widely used reference im-
plementations of MPI. It has been extended to support
fault tolerance and application migration with coordinated
checkpoint using the Chandy-Lamport algorithm [I S , SI.
LAMMPI does not include any mechanism to include other
kinds of fault tolerant protocols. In particular it does not
provide an easy mechanism to implement message log pro-
tocols. It uses high level MPI global communications that
are not comparable in performance with other fault tolerant
implementations.

Message logging protocols are fault tolerant protocols
based on the Piecewise determinism assumption [21, IO]:
an execution is lead by the sequence of all its non determin-
istic events. During the initial execution, all non determinis-
tic events are logged. When a process crashes, it is restarted
from a local checkpoint image, then its reexecution is lead
by all events logged in order to restore the same state it has
before the crash. Many message logging protocols assume
that non deterministic events consist only in receptions of
messages [IO]. There exist three classes of messages proto-
cols, determined by the way events are loggcd: Optimistic,
pessimistic and causal message logging [IO].

Pessimistic message logging protocols ensure that all
events of a process P are safely logged on stable storage
before P can impact the system (sending a message) at the
cost of synchronous operations. Optimistic protocols as-
sume faults will not occur between an event and its log-
ging, avoiding the need of synchronous operations. As a
consequence, when a fault occurs, some non crashed pro-
cesses may have to rollback. Causal protocols try to com-
bine the advantages of both optimistic and pessimistic pro-
tocols: low performance overhead during failure free exe-
cution and no rollback of any non crashed process. This
is realized by piggybacking events to message until these
events are safely logged. A formal definition of the three
logging techniques may be found in [l] .

A more detailed related work on pessimistic protocols
and global checkpointing protocols can be found in [61
which presents a first comparison of a global checkpoint-
ing technique and a pessimistic message logging technique.
In this paper we focus on causal protocols.

I16

Egida 1171 is a framework allowing to compare fault tol-
erant protocols for MPI. It is implemented using an object
model. It conforms to the MPICH chameleon interface,
and essentially adds an intcrposition layer hetween a MPI
channel interface and the upper layers of MPICH. This ar-
chitecture allows benefiting from improvements of both the
MPI channel interface (for example zero-copy communica-
tion over channels supporting it) and the upper layers. It
provides various pre built objects and templates to specify
new fault tolerant protocols such as Coordinated checkpoint
and various message logging protocols. Howcver, two ele-
ments limit its use as a generic platform to study fault toler-
ance protocols for a large variety of platforms: I) the MPI
channel interface may use internal low level control mech-
anisms (and messages) and retain messages in buffers. This
may hide some nondeterministic events to Egida. making it
subject to incorrect recxecutions in case of faults depending
on the channel implementation; 2) it does not decouple the
MPI application from the network interface. Once compiled
and linked with MPICH, the application can only run for
one network interface type. This precludes a key element
of fault tolerance: migration on heterogeneous networks.
Comparison between pessimistic and causal message log-
ging have been studied using Egida 1161. As expected, pes-
simistic are faster than causal techniques for restarting since
all events can be found on stable storage, but have much
more overhead during failure-free execution. However the
comparison we focus in this paper, between causal mes-
sage log and coordinatcd checkpoint, has not been studied
in Egida.

An estimation of the overhead introduced by causal mes-
sage protocols have been studied hy simulation in [3].

There are different strategies to reduce the weight of pig-
gybacked information. Manrtho [9] presents the first im-
plementation of a causal message logging protocol. Each
process maintains an antecedence graph which records the
causal relationship between nondeterministic events. When
a process sends a message to another one, it does not send
the complete graph but an incremental piggybacking: all
events preceding one initially created by the receiver need
not to be sent back to it. An other algorithm have been pro-
posed in 1141 to reduce the amount of piggybacking on each
message. It partially reorders events from a log inheritance
relationship. Moreover it requires no additional piggyback-
ing information. This allow to have some information about
the causality a receiver may already hold.

In this paper, we propose a novel causal message logging
protocol, using a stable node to limit the amount of causality
piggybacking.

generic device

Figure 1. General Architecture of MPICH-V

3 Fault tolerance framework

MPICH-V is based on the MPICH 1.2.5 library 1131,
which builds a full MPI library from a channel. A channel
implements the basic communication routines for a specific
hardware or for new communication protocols. MPICH-V
consists of a set of runtime components and achannel (ch-v)
for the MPICH library.

Our first fault tolerant architecture [6] was built upon a
generic device, which was interfaced with the MPICH li-
brary, and a specific communication daemon implementing
the different fault tolerance protocols. The message com-
munication routines were instantiated slightly similarly in
each specific communication daemons. We designed the
new architecture (figure I) presented here in order to sepa-
rate more clearly the generic lower layer from the protocol
specific parts and ease the development and integration of
fault tolerance protocols.

The generic architecture provides all thc communica-
tion routines between the different kind of components in-
volved in the MPICH-V architecture and is detailed be-
low. Fault tolerant protocols are designed through the im-
plementation of a set of hooks called in relevant routines
of the generic subsystem and some specific components.
We call V-protocol such an implementation. Currently, we
provide three V-protocols (Vdummy, Vcl and Vcausal) de-
scribed in the following subsections. Vdummy is a trivial
implementation of these hooks which does not provide any
fault tolerance (equivalent to the MPICH-P4 reference im-
plementation). It is used to measure the raw performances
of the generic communication layer. Vcl implements the
Chandy-Lamport Algorithm 181 For global checkpointing of
distributed applications. Vcausal implements a new causal
message logging protocol.

I I 7

3.1 Generic Architecture

In the generic architecture, the MPI proccss does not
connect directly to the othcr ones. It communicates with
a generic communication daemon, through a pair of sys-
tem pipes. These daemons are connected together and re-
lay the communications. This separation is mainly due to
checkpoint-related constraints.

The daemon handles the effective communications,
namely sending, receiving, reordering messages, establish-
ing connections with all components of the system and de-
tects failures. In each OF these routines, protocol depen-
dant functions are called. The collection of all these func-
tions is defined through a fault tolerance API and each pro-
tocol implements this API (see next subsection). In order
to reduce the number of system calls, communications are
packed using iovec related techniques by the generic com-
munication layer. The different communication channels
are multiplexed using a single thread and the select system
call. This common implementation of communications al-
lows a fair comparison between the different protocols.

Three other components are involved in fault tolerance
protocols: the dispatcher, the checkpoint scheduler and the
checkpoint server (see typical deployments in figure 2). All
these components should be run on a reliable system (po-
tentially the same stable machine) and a more detailed de-
scription may be found in our previous papers on MPICH-V
[4,61.

3.2 Global checkpointing implementation

The conclusion of our previous comparison [6] stated
that a major drawback of the global checkpointing tech-
niquc was the restart time after a single crash. This time
is mainly due to the stress of the checkpoint servers.

A strategy to reduce this stress is to use a simple local
checkpoint image cache on each node and limit the access
of the checkpoint servers during restart to the crashed prc-
cesses only. Every process makes a local copy of the check-
point image they send to the checkpoint servers (at the speed
of the slowest component between the disk and the net-
work, in order to limit the amount of memory used). When
a restart occurs, instead of collecting their last checkpoint
image from the checkpoint server, non-crashed processes
access them from the local filesystem.

Since every component does not connect to a single
repository when a restart is triggered, special care has to
be taken to ensure the coherence of the global image. The
cache-coherence algorithm is implemented in the check-
point scheduler, which computes an identifier of global
coherent views. When a process has successfully check-
pointed its state, it notifies the checkpoint scheduler, which
validates the global view when every component has check-

pointed (locally and remotely) its state. The implementa-
tion of the Chandy-Lamport algorithm [XI, in the Vcl V-
protocol, remains the same as the one presented in [6] . The
checkpoint image is taken transparently using the condor
standalone checkpointing library [15].

3.3 Message logging implementation

Pessimistic message logging techniques use a reliable
component to store the causality of an initial execution. In
order to ensure the completeness of this causality, every pes-
simistic protocol does not allow the process to intluence the
system until every previous nondeterministic event is safely
logged. In an implementation where the reliable component
is a remote process, this introduces a high network latency.

In order to obtain a low latency, a process must be able
to intluence the system at any time, without waiting for
acknowledge. This may lead to lose relevant causality in-
formation. To avoid this potential information lost, Causal
Message Logging protocols attach causality information on
all messages.

A main drawback of causal message logging protocols is
that the amount of causality information piggybacked with
every message transmission may grow with the number of
messages exchanged. In the previous architecture, the reli-
able component used to log the causality information was
a remote process called the event logger. In this improved
version, we use the same component, as a protocol specific
component, to reduce the amount of causality information
added to messages.

Roughly speaking, the protocol is the following (see fig-
ure 3): when A receives a message from B @, the daemon
of A associates a unique identifier to the reception (causality
information) and sends asynchronously this causality infor-
mation to the event logger. When A has to send a message
0, thc causality information of all previous receptions is
added to the message only if they have not been acknowl-
edged by the event logger yet. When the event logger ac-
knowledges some causality information 0. this information
is discarded by the communication daemon of A. If A fails,
it is restarted in its last checkpoint state by the dispatcher.
It collects from the event logger and from every other alive
nodes all the causality information and conforms its execu-
tion to this information until i t reaches the state preceeding
the crash. Then, the execution continues normally. This
protocol is implemented in the Vcausal protocol.

Another improvment to reduce the number of transmit-
ted causality is used in the implementation. Each daemon
remembers the last events it sends to or receive from a
neighbor B. As there is a total order between the causal
events generated by a single node A, no event created by
the same node A preceding the last event have to be piggy-
backed when sending to this neighbor B. '

118

Figure 2. Typical deployment of MPICH-V for Vdummy, Vcl and Vcausal

Nerwork
plotocol
Latency
Network
protocol
Larency
Network
Prolocoi
Latency Figure 3. Sample of execution without fault

for the causal logging protocol

fithemet 1CiIMbiUs
TCP I P4 I Vdummy 1 Vci I VcausaI I V2
75.55 1 99.56 1 134.84 I 138.27 156.92 I 291.78
Myrinet 2wO
TCP I P? I V d u m y I Vci I VausaI I V?
42.93 152 .96 I 94.22 I 98.96 I 112.31 I 183.38
SCI
TCP 1 P4 I Vdnmmy I VcI I Vcnuaal I VZ
23.07 I 34.21 I 76.33 I 81.19 I 116.04 I 355.31

4 Experiments

4.1 Experimental conditions

We present a set of experiments in order to evaluate the
different components of the system.

Ethernet experiments are run on a 32-nodes cluster. Each
node is equipped with an AthlonXP 28W+ processor, run-
ning at ZGHz, ICB of main memory (DDR SDRAM), and
a 70GB IDE ATAIOO hard drive and a 100Mbit/s Ethernet
Network Interface card. All nodes are connected by a sin-
gle Fast Ethemet Switch. Myrinet experiments are run on
a 8-nodes cluster. Each node is similar to Ethernet nodes
but are equipped with Dual AthlonXP-MP 2200+ proces-
sors, running at I.8GHz. Myrinet network is Myrinet2000
connected by a single 8-ports Myrinet switch. SCI experi-
ments are run on the same 32-nodes cluster as Ethernet ex-
periments. All nodes are connected by SCI cards using a
2D-toNs topology.

All these nodes use Linux 2.4.20 as operating system.
The tests and benchmarks are compiled with GCC (with Hag
-03) and the PGI Fortran77 compilers. All tests are run in
dedicated mode. Each measurement is repeated 5 times and
we present a mean of them.

The first experiments are synthetic benchmarks analyz-
ing the individual performance of the subcomponents. We
use the NetPIPE [I91 utility to measure bandwidth and la-
tency. This is a ping pong test for several message sizes
and small perturbations around these sizes. The second set
of experiments is the set of kernels and applications of the
NAS Parallel Benchmark suite [Z], written by the NASA

NAS research center to test high performance parallel ma-
chines.

For all experiments, we consider a single checkpoint
server connected to the rest of the system by the same net-
work as the MPI traffic. While other architectures have been
studied for checkpoint servers (distributed file systems, par-
allel file systems), we consider that this system impacts the
performance of checkpointing similarly for any fault toler-
ant protocol.

4.2 Fault Tolerant Framework performances

To perform a fair comparison between all fault tolerant
protocols, we have to identify the overhead sources. We de-
fined a shared framework for all the fault tolerant protocols.
The overhead related to this framework can be mesured us-
ing the V-protocol Vdummy that does not provide any fault
tolerance. We compare our framework without any fault
tolerance with the reference implementation MPICH-P4 in
order to summarize the framework related overhead.

The figures 4 and 5 compares bandwidth and latency
of the NetPIPE ping-pong benchmark for various protocols
and networks.

On the Ethernet network, Vdummy shows only a small
overhead on bandwidth compared to P4. It shows a 30 per-
cent increase in latency, this outlines the lack of a zero-copy
implementation.

119

Myrinet and SCI experiments are performed using the
TCP/IP emulation interface of the network cards. Because

bandwidth is half the one of P4 on SCI network and latency
is twice the one of P4 on SCI and Myrinet. On the Myrinet
network, P4 does not reach good performances. We decided
not to compare our implementation with P4 on Myrinet.

On each network, the performance decreases induced by
our framework is a constant multiplicative factor. Frame-
work overhead is well identified and related to copy and
computation between the emission of each network frame.
This statement allows to identify which overhead is frame-
work related and which is fault tolerant protocol related.

We also validated performances of our framework and
compared each fault tolerant protocol on the set of kemels
and applications of the NAS parallel benchmark on Ether-
net without checkpointing (figure 6). On latency driven tests
like CG and MG the V-framework reaches the same perfor-
mance as the reference implementation P4. On handwidth
driven tests like BT, our framework reaches better perfor-
mance than P4. This is due to architectural diflerences be-
tween P4 and V that allow V to perform full duplex com-
munications.

Numbcrofndes 1 4 9 I 16 I 25
Remoteonly 1 2384 23 17 I 24% I 21 I 1
Localandremole I 2 3 8 6 1 2 3 1 4 1 2 4 9 2 1 2 4 1 7

4.3 Optimizing global checkpointing and message
logging

4.3.1 Global checkpointing optimization

We introduced in Vcl the new feature of performing local
checkpointing overlapped with remote checkpointing.

The figure 7 presents the impact of local checkpointing
on the overall checkpointing performance of the BT class
A benchmark with a single checkpoint server over Ethernet
network. The overhead induced by local checkpointing is
negligible compared to the total checkpoint time.

Figure 8. Time (in seconds) to restart after an
increasing number of failures for ET Class A,
with or without local checkpointing.

In figure 8 we compare the time to restart BT class A
benchmark after an increasing number of failures for ch.cl
(the non improved version of Chandy-Lamport) and Vcl
with a single checkpoint server over the Ethernet network.
Time to restart a single process of BT A 25 from a local
checkpoint is 0.54s compared to 2.94s from a remote dedi-
cated checkpoint server. On one hand, the time to restart in
c h r l is a linear factor of the total number of nodes. On the
other hand, the time to restart in Vcl is a linear factor of the
number of failed nodes: the time to restart non failed nodes
from local checkpoint is totally overlapped by the time to
restart failed nodes from remote checkpoint server. More-
over the overhead of the checkpoint server is limited, as
the number of nodes simultaneously requesting their check-
point image is reduced.

The use of a high performance network may remove
the network bandwidth bottleneck related to remote check-
pointing. However, a t the checkpoint server side, the disk
handwidth is shared between all concurrent checkpoints.

CG, Class A CG, Class B MG, Class A MG, Class B
500 2500

400 2000
400

8 300
2000

1500

1000

300 1500

200 1000

P

z
0 200

100 500 500

0 0 0

100

0
1 2 4 8 1 6 3 2 1 2 4 8 1 6 3 2 1 2 4 8 1 6 3 2 1 2 4 8 1 6 3 2

#processors #processors #processors #processors

FT, Class A SP, Class A LU, Class A LU. Class E

4000 7000
6000

5000

4000

3000
2000
1000

1400

1200 1200

:: 1000 3000

2000 0 600

1000 ' 400
200

0

p 800 800

400

0 0 0
1 4 9 16 25 1 2 4 8 1 6 3 2 1 2 4 8 1 6 3 2 2 4 8 16 32

#processors

ET, Class A
3500

3000

(o 2500
4

m
P 2000

2 1500

z 1000

500
0

1 4 9 16 25
#processors

#processors

ET, Class B
5000

4000

3000

2000

1000

0
1 4 9 16 25

#processors

#processors #processors

I I MPICH-P4 I 1 MPICH-Vdummv
U MPICH-Vcl

Figure 6. NAS parallel benchmark comparison between MPICH-P4, MPICH-Vdummy, MPICH-Vcl,
MPICH-Vcausal on Fast-Ethernet network.

121

Figure 9. Ping-Pong latency comparison be-
tween MPICH-Vdummy, MPICH-Vcausal and
MPICH-V2 on Fast-Ethernet and Myrinet 2000
networks.

Thus, it is sensible to consider that local disk's bandwidth
is higher than shared checkpoint server disk's bandwidth.

4.3.2 Message logging optimization

In figure 9 we compare the latency between V2 (pessimistic
protocol) and Vcausal. The causal protocol latency is half
the one of the pessimistic protocol. The acknowledge pro-
tocol with the event logger in V2 introduces a three time
higher latency compared with raw MPI communications
(P4). On the one hand, as message logging is done asyn-
chronously, it is possible that this acknowledge protocol is
finished when the MPI application requests a send, induc-
ing almost no latency. On the other hand, the event logger
may introduce very high overhead when multiple comput-
ing nodes are accessing i t at the same time, leading to a
very high latency. The latency values presented are average
values over 5000 measurements. The differcnce around the
average values varies up to 93 percent. This is due to simul-
taneous requests to the event logger from multiple nodes,
one of the request is delayed, and this node waits longer for
it's acknowledge.

In Vcausal, in this ping-pong test, for 90 percent of the
exchange, the size of the message is increased by causality
information of the last reception. For small messages this
leads to double the size of mrssages. This induces a proto-
col related overhead on latency in causal protocol, explain-
ing that it does not reach the latency of raw MPI protocol.

On the Myrinet network, differences between protocols
are decreased by the constant I-copy implementation over-
head. However the same behavior can he exhibited.

In figure 4 we compare the bandwidth of all the protocols
we present. The low bandwidth performance in the causal
protocol is due to the computation of which causal events
have to be piggybacked.

Impact of Fault Frequency
AT /I 5 M*8. rihumc, 1m

1600

E IM" I !

Figure 10. Fault frequency impact on execu-
tion time of BT B 25 nodes on Fast-Ethernet,
using coordinated checkpoint or causal mes-
sage logging as fault tolerant protocol.

4.4 Global checkpointing versus message logging
comparison

The bandwidth and latency figures 4,5 present compari-
son between Vcl, Vcausal, with Vdummy as the reference.

As expected, the Chandy-Lamport algorithm does not in-
duce any overhead on fault free execution. The latency of
Vcl is very close to the one of Vdummy. Vcl reaches the
same bandwidth as Vdummy.

The Vcausal implementation induces a 13.6 percent in-
crease in latency compared to Vcl on Ethernet, 13.5 percent
on Myrinet and 42 percent on SCI. The impact on band-
width of the piggybacking computation is about I O percent
on each networks.

The figure 6 compares Vcl, Vcausal, and Vdummy on
the NAS benchmarks. Results for FT class B are not pre-
sented as the benchmark exceeds memory requirement of
our test platform, even for the P4 implementation. Vcl
reaches the performance of Vdummy on all tests. Vcausal
suffers from a performance decrease on fault free execution
on kernel tests CG and MG, but reaches the same perfor-
mance as Vdummy for all other tests.

Vcausal is unable to successfully finish LU 32 bench-
mark without checkpointing. This is due to the huge amount
of memory used by sender-based log of message payload.
In message log protocols, checkpoint frequency is related
to garbage collecting of sender-based message payload. In
Coordinated checkpoint it is only related to the expected
fault frequency.

The figure I O compares fault frequency impact on exe-
cution time when using whether coordinated checkpoint or
causal message logging as fault tolerant protocol. This ex-
periment consists in running BT B 25 and introduces faults.
In Vcl, checkpoints are scheduled using a fixed period re-

122

lated to the expected fault frequency. Given a checkpoint
period T and a checkpoint date T,, a fault is introduced on
a random node at T, + 5, defining a fault frequency f. In
Vcausal checkpoint is scheduled using a round robin policy.
Faults are generated on a random nodc using the same fault
frequency f .

A similar comparison was performed in [6] between
standard Chandy-Lamport algorithm (ch-cl implementa-
tion) and pessimistic message logging protocol (V2 imple-
mentation). This article outlines I) a 40 percent overhcad of
V2 compared to non checkpointed execution of ch.cl and 2)
that remote restart overhead of c h x l leads pessimistic mes-
sage log to perform better at high fault frequency (more than
0.002 faults per seconds).

Current comparison between improved Chandy-Lamport
and causal message logging, using the same application and
experimental conditions, outlines a 20 percent overhead of
Vcausal over a non checkpointed execution of Vcl, reduc-
ing the fault free performance difference between message
logging and coordinated checkpoint strategies. On the other
hand, Vcl does not suffer from the high remote restart over-
head. It has a better fault resiliencc than ch-cl and sup-
ports higher fault frequencies. As a consequence, the cross-
point between the two protocols appears at higher fault rates
(more than 0.006 faults pcr seconds), even if causal protocol
performs better than pessimistic ones without faults. How-
ever, Vcl stills not ensure progression of the computation
when reaching 0.012 faults per seconds, while causal proto-
col stills perform at 50 percent of its fault free performance.

'

5 Conclusion

Large scale cluster and Grid system raise the issue of
tolerance to frequent and numerous faults. Since these
systems are mostly programmed using MPI, the use of a
fault tolerant MPJ implementation will become unavoid-
able. Among the automaticltransparent fault tolerant ap-
proaches, two main classes can he considered, using either
coordinated checkpoint or message logging. It has been pre-
viously proven that there is a crosspoint from which pes-
simistic message logging performs better than coordinated
checkpoint. The purpose of this paper was to study two op-
timizations of coordinated checkpoint and message logging,
in the potential perspective to find that one technique would
always perform better.

We have implemented a shared framework from the
MPICH 1.2.5. From this framework we have implemented
I) coordinated checkpoint with the local checkpoint capa-
bility and 2) causal message logging with asynchronous sta-
ble component to store causality (MPICH-Vcl and MPICH-
Vcausal respectively). After having validated the perfor-
mance of our generic shared framework, we compared local
checkpoint improved Chandy-Lamport implementation to

remnte checkpoint standard Chandy-Lamport one (MPICH-
CL), and causal message logging to pessimistic message
logging (MPICH-V2) for various networks including Fast-
Ethernet, Myrinet 2000 and SCI. We have demonstrated that
recovery overhead of Vcl is significantly lower than ch.cl
without any additional fault free overhead. We have demon-
strated that latency overhead of Vcausal is reduced at the
cnst of a slight bandwidth decrease comparcd to V2. We
have demonstrated that the fault free performance differ-
ence between Vcausal and Vcl is smaller than between V2
and CL, and that Vcl tolerates higher fault frequency than
ch-cl, but still does not reach fault resilience of message
logging techniques due to checkpoint server stress during
checkpoint.

Due to better fault resilience, the minimal fault fre-
quency from which message logging outperforms coordi-
nated checkpoint is increased from 0.002 faults per seconds
to 0.006 faults per seconds. If we consider an application
with a larger data set of IGB, this crosspoint should appear
at one fault every 9 hours. If we consider that real clusters's
MTBF are greater than 9 hours, it appears that coordinated
checkpoint are more appropriate in such environments.

Improving the shared framework to perform more accu-
rate experiments on high performances networks belongs to
a set of planned experiments a) to find the crosspoint for
high performance networks, h) to understand in practice
(with real software and cluster) the impact of checkpoint
servcr architecture and c) to use large number of nodes to
understand the cost of the Chandy-Lamport algorithm by it-
self over various or heterogeneous network configurations.

6 Acknowledgments

MPICH-V belongs to the "Grand Large" project of the
PCRI (Pole Commun de Recherche en Informatique) of
Saclay (France) and the INRIA Futurs.

MPICH-V projcct is partially funded, through the
C G E P project, by the French ACI initiative on GRID of
the ministry of research.

References

[I] L. Alvisi and K. Marmllo. Merruge logging : Pessimistic, optimistic. and
causal. In Pmcrrdings of the l5rh lnamafionnl Confw" on Dbl"bared
Compuring Sntrmr (ICDCS 1995). pages 22S-236. IEEE CS Press, May-lune
1995.

[2l David Bailey. Tim H h z William Saphir. Rob Van Der Wijngm. Alex Woo.
und Mauiiunce Yulror. The NAS Pvrdlel Bcochmvrks 2.0. Report NAS-95-020,
Numencd Aerodynamic Simulation Facility, NASA Ames Research Center.
1995.

[3] Karm Bhatis, Keith Murzullo. und L o r " Alvisi. "he relative overhead of
piuybaclang in causal mersagr log&ing protocols. h 17th Symposium on Rr-
Ilahlr Distributrdsyxemr ISRDS'DXJ. pages 348-353 IEEE CS Press. IWX.

[4] George Bosilca. A d l i e n Bouteiller. FPJnck Cappcllo. Svnir Djilali. Cilles
FgrWr. C e d e Gemwin. Tho- H h u l I . Picm Lmwnnicr. Olea Lcdygcrtsky.

I23

[I21 Willivn(iroppandEwing1,usk. Fault tolerancein MPI pmgnm. ipelul i rsur
rfik b u m d HiRh Pel?i)rmncc Compulini Applirolioru (IJHPCAJ, 2W.

[I31 W~llim Gropp. Ewing Lusk. Nathan DOSE. and Anthony Skjdlum. High-
p r i u m c r , ponahlr implemenwtion of h e MFI message pussing interface
swndard. Pamllrl Compurin& 22i6):789428. Srptcmkr 1916.

[I41 Byoungoo Le. Tarsoon Pxk. Hcon Young Ymm. and Yoohn Cho. An ef-
ficient algonihm for causal message lagging. In 171h Sumpmium on Reliuhlr
Distributed System (SRDS 19YHJ. pages 19-25, IEEE CS Press, OFt~brr 1998.

[IS] M. Litzkow, T. Tanncnbuum, J. Bsncy. and M. Limy. Checkpoint and mign-
tion of UNlX pmcesvs in the condor distributed processing SySfcm. Technical
Rrpan Technicid Repon 1346. University of Wi~~omin-Mudi~on, 1997.

[I61 Snrm Ruo. Lorenzo Aluiii. and Hmick M. Wn. The cos af recovery in
msrage logging pmrocols. In 17rh symposium on Reliable Dirrriburrd S w r m
ISRDSJ. pages 1&18. IEEECS Press. Octokr 1998.

1171 Sri- Rao. Lorenza Alvisi. and Hmick M. Wn. E@a: An extensible Iwlkit
for low-overhead fault-rolennce. In 29th Sympmium on Fouli-Tolerant Cum-
putin8 (FTCS'YY), pages 48-55. EEE CS Press. 1999.

[I81 Sri- Sanlwran. Jeffrey M. Squyes. Btian Banen. Andrew Lumdaine, Ja-
son h e l l . Paul Hagrove, und €tic R a m . The L A W P I c h r c k p i n l / m m
hmewark System-iritiuted checkpainting. In Pmceedims. LACS1 S~mou-
slum, S a w Fe. New Mexico. USA. Octokr ZW3

[I91 Q. Snell, A. Mikler, and J. Cuslvfson. Netpipe: A "erwork protocol indepen-
dent prfomwncr e v a l ~ a t o ~ In IASTED Inirmorioonol Conference on Inrelliarnt
InJonmuion Monagmnfand Srstrm., June 1996

[ZOI M. Snir, S. Otto, S. Huss-Ledem, D. Walker. and 1. Dong-. MPI The
Complele ReJemnce. The MIT Res$. 1996.

[Z l] E. SmmmdS. Yemini. Dptimisticrecoveryindirvlhured system. InTmnsac-
lions on Compurerswremr. volume 3 0) . pages ZW-226. ACM. August 1985.

124

