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Abstract 

Fault tolerance is a very imporiant concern for critical 
high performance applications using the MPI library Sev- 
eral protocols provide automatic and transparent fault de- 
tection and recovery for message passing systems with dif- 
ferent impact on application performance and the capaciiy 
to tolerate a high fault rate. In a recent papec we have 
demonstrated that the main differences between pessimistic 
sender based message logging and coordinated checkpoint- 
ing are I )  the communication latency and 2) the perfor- 
mance penalry in case of faults. Pessimistic message log- 
ging increases the latency, due to additional blocking con- 
trol messages. When faults occur at a high rate, coordinated 
checkpointing implies a higher performance penalty than 
message logging due to a higher stress on the checkpoint 
semeI: In this paper we extend this study to improved ver- 
sions of message logging and coordinated checkpoint pro- 
tocols which respectively reduces the latency overhead of 
pessimistic message logging and the semer stress of coor- 
dinated checkpoint. We detail the protocols and their im- 
plementation into the new MPICH-V fault tolerant frame- 
work, We compare their performance against the previous 
versions and we compare the novel message logging pro- 
tocols against the improved coordinated checkpointing one 
using the NAS benchmark on a rypical high performance 
cluster equipped with a high speed neiwork. The contribu- 
tion of this paper is iwo folds: a)  an original message log- 
ging protocol and an improved coordinated checkpointing 
protocol and b) the comparison between them. 

Keywords: Fault tolerant MPI, coordinated checkpoint, 
message log, high speed networks, performance. 

1 Introduction 

A current trend in clusters is nn increasing number of 
processors installed in clusters over the time [6]. As a con- 

sequence, clusters with hundreds or thousands of processors 
will become more and more common. Large clusters are 
under construction like the Sandia Red Storm with 10,368 
processors. In such a cluster, hardware and software fail- 
ures are not rare [4]. Even strong selection of the cluster 
components cannot avoid failures. 

Another current trend is the use of MPI as message pass- 
ing environment for high performance parallel applications. 
MPI in its specification and most deployed implementations 
(MPICH[13] and LAMMPI[7]) follows the fa i l  stop- se- 
mantic (specification and implementations do not provide 
mechanisms for fault detection and recovery) [20]. Thus, 
MPI applications running on a large cluster may be stopped 
at any time during their execution due to an unpredictable 
failure. 

The consequences of a failure may he very significant 
due to the loss of hours of computation. Some clusters are 
used for critical applications where the crash of the appli- 
cation may simply preclude delivering the result on time. 
Failures may also he the origin of massive waste of energy. 
For example, an application running on 500 CPUs that stops 
after 15 hours of computation because one component of the 
system has failed, wastes about the equivalent of 1 year of 
sequential computation. While the waste of hours of com- 
putation might be acceptable once, the uncertainty raised 
by the impossibility to guaranty that the same application 
will not encounter another failure during its reexecution is 
unacceptable for many users. 

These risks have recently reactivated the research in the 
domain of fault tolerant MPI. Several research projects are 
investigating fault tolerance at different levels: network 
[ I81 , system [ 5 ] ,  applications [ I  I]. Different strategies 
have been proposed to implement fault tolerance in MPI: 
a) user/programmer detection and management, b) pseudo 
automatic guided by the programmer and c) fully auto- 
maticltransparent. For the last category, several protocols 
have been discussed in the literature. Thus for the user and 
system administrator, there is a choice not only among a va- 
riety of fault tolcrance approaches but also among various 
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fault tolcrance protocols. 
Dcspite fault tolerancc in distributed system has a long 

history of researches, there are very few comparisons be- 
tween protocols for the fully automatic and transparent ap- 
proach. In a recent study, we have compared the merits of 
uncoordinated checkpointing based on pessimistic message 
logging and coordinated checkpointing based on a Chandy- 
Lamport like algorithm [6]. Pessimistic message logging 
adds an overhead evcn on fault free executions. Coordi- 
nated checkpoint implies the restart of all processes if a 
failure occurs during the execution, leading to a high stress 
of the checkpoint repository process. Using an experimen- 
tal study, we demonstrated that the main differentiating pa- 
rameter between the two approaches is the fault frequency: 
when the number of faults during a singlc execution in- 
creases, the restart cost of the coordinated checkpoint ap- 
proach tends to compensate the overhead of the message 
logging one. There is a crosspoint from which the message 
logging approach outperforms the coordinated checkpoint 
one. 

In this paper, we push forward this comparison between 
the two forms of fault tolerant protocols by comparing im- 
proved version of the two approaches. Namely, we compare 
a version of coordinated checkpoint strongly reducing the 
stress of the process checkpoint repository on restart and a 
version of message logging protocol based on a novel causal 
strategy strongly reducing the overhead of this approach. 
Thus the contribution of this paper is two folds: improved 
versions of well known protocols and a comparison between 
the two candidate approaches. 

The paper is organized as following. The second part of 
the paper presents the related works highlighting the origi- 
nality of this work. The third part presents a new organiza- 
tion of our fault tolerant protocol framework (an improved 
version compared to the one presented in [6]). Section 4 
presents experiments to validate the new framework, study 
the performance the two improved protocols using NAS 
benchmarks, and compare them against previous versions. 
The final section concludes and presents future works. 

2 Related work 

Several projects are working on implementing a fault tol- 
erant MPI using different strategies. An overview can be 
found in [121. 

A first method consists in non automatic fault tolerant 
protocols such as FI-MPI [ 111. Special instructions have 
then to be introduced in the MPI code in order to exploit 
the error retumed by MPI instructions on failure detection. 
In this study we concentrate only on automatic and transpar- 
ent fault tolerant protocols providing fault tolerance without 
any change of the MPI application code. 

Global checkpointing and message logging protocol are 

well known automatic and transparent fault tolerance tech- 
niqucs. Nevertheless few comparisons exist between these 
two methods. Extended descriptions of these techniques 
can bc found in [IO]. 

Global checkpointing consists in taking a coherent snap- 
shot of the system at a time. A snapshot is a collection 
of checkpoint images (one per process) with each channel 
state, A snapshot is said to he coherent if for all messages 
m from P, to P,, if the checkpaint on PI has been made 
after reception of m then checkpoint on Pi has been made 
after emission of m. For our global checkpoint protocol im- 
plementation, we use the Chandy-Lamport algorithm [SI. 

LAMMPI [7] is one of the widely used reference im- 
plementations of MPI. It has been extended to support 
fault tolerance and application migration with coordinated 
checkpoint using the Chandy-Lamport algorithm [ I S ,  SI. 
LAMMPI does not include any mechanism to include other 
kinds of fault tolerant protocols. In particular it does not 
provide an easy mechanism to implement message log pro- 
tocols. It uses high level MPI global communications that 
are not comparable in performance with other fault tolerant 
implementations. 

Message logging protocols are fault tolerant protocols 
based on the Piecewise determinism assumption [21, IO]: 
an execution is lead by the sequence of all its non determin- 
istic events. During the initial execution, all non determinis- 
tic events are logged. When a process crashes, it is restarted 
from a local checkpoint image, then its reexecution is lead 
by all events logged in order to restore the same state it has 
before the crash. Many message logging protocols assume 
that non deterministic events consist only in receptions of 
messages [IO]. There exist three classes of messages proto- 
cols, determined by the way events are loggcd: Optimistic, 
pessimistic and causal message logging [IO]. 

Pessimistic message logging protocols ensure that all 
events of a process P are safely logged on stable storage 
before P can impact the system (sending a message) at the 
cost of synchronous operations. Optimistic protocols as- 
sume faults will not occur between an event and its log- 
ging, avoiding the need of synchronous operations. As a 
consequence, when a fault occurs, some non crashed pro- 
cesses may have to rollback. Causal protocols try to com- 
bine the advantages of both optimistic and pessimistic pro- 
tocols: low performance overhead during failure free exe- 
cution and no rollback of any non crashed process. This 
is realized by piggybacking events to message until these 
events are safely logged. A formal definition of the three 
logging techniques may be found in [l] .  

A more detailed related work on pessimistic protocols 
and global checkpointing protocols can be found in [61 
which presents a first comparison of a global checkpoint- 
ing technique and a pessimistic message logging technique. 
In this paper we focus on causal protocols. 
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Egida 1171 is a framework allowing to compare fault tol- 
erant protocols for MPI. It is implemented using an object 
model. It conforms to the MPICH chameleon interface, 
and essentially adds an intcrposition layer hetween a MPI 
channel interface and the upper layers of MPICH. This ar- 
chitecture allows benefiting from improvements of both the 
MPI channel interface (for example zero-copy communica- 
tion over channels supporting it) and the upper layers. It 
provides various pre built objects and templates to specify 
new fault tolerant protocols such as Coordinated checkpoint 
and various message logging protocols. Howcver, two ele- 
ments limit its use as a generic platform to study fault toler- 
ance protocols for a large variety of platforms: I) the MPI 
channel interface may use internal low level control mech- 
anisms (and messages) and retain messages in buffers. This 
may hide some nondeterministic events to Egida. making it 
subject to incorrect recxecutions in case of faults depending 
on the channel implementation; 2) it does not decouple the 
MPI application from the network interface. Once compiled 
and linked with MPICH, the application can only run for 
one network interface type. This precludes a key element 
of fault tolerance: migration on heterogeneous networks. 
Comparison between pessimistic and causal message log- 
ging have been studied using Egida 1161. As expected, pes- 
simistic are faster than causal techniques for restarting since 
all events can be found on stable storage, but have much 
more overhead during failure-free execution. However the 
comparison we focus in this paper, between causal mes- 
sage log and coordinatcd checkpoint, has not been studied 
in Egida. 

An estimation of the overhead introduced by causal mes- 
sage protocols have been studied hy simulation in [3]. 

There are different strategies to reduce the weight of pig- 
gybacked information. Manrtho [9] presents the first im- 
plementation of a causal message logging protocol. Each 
process maintains an antecedence graph which records the 
causal relationship between nondeterministic events. When 
a process sends a message to another one, it does not send 
the complete graph but an incremental piggybacking: all 
events preceding one initially created by the receiver need 
not to be sent back to it. An other algorithm have been pro- 
posed in 1141 to reduce the amount of piggybacking on each 
message. It partially reorders events from a log inheritance 
relationship. Moreover it requires no additional piggyback- 
ing information. This allow to have some information about 
the causality a receiver may already hold. 

In this paper, we propose a novel causal message logging 
protocol, using a stable node to limit the amount of causality 
piggybacking. 

generic device 

Figure 1. General Architecture of MPICH-V 

3 Fault tolerance framework 

MPICH-V is based on the MPICH 1.2.5 library 1131, 
which builds a full MPI library from a channel. A channel 
implements the basic communication routines for a specific 
hardware or for new communication protocols. MPICH-V 
consists of a set of runtime components and achannel (ch-v) 
for the MPICH library. 

Our first fault tolerant architecture [6] was built upon a 
generic device, which was interfaced with the MPICH li- 
brary, and a specific communication daemon implementing 
the different fault tolerance protocols. The message com- 
munication routines were instantiated slightly similarly in 
each specific communication daemons. We designed the 
new architecture (figure I) presented here in order to sepa- 
rate more clearly the generic lower layer from the protocol 
specific parts and ease the development and integration of 
fault tolerance protocols. 

The generic architecture provides all thc communica- 
tion routines between the different kind of components in- 
volved in the MPICH-V architecture and is detailed be- 
low. Fault tolerant protocols are designed through the im- 
plementation of a set of hooks called in relevant routines 
of the generic subsystem and some specific components. 
We call V-protocol such an implementation. Currently, we 
provide three V-protocols (Vdummy, Vcl and Vcausal) de- 
scribed in the following subsections. Vdummy is a trivial 
implementation of these hooks which does not provide any 
fault tolerance (equivalent to the MPICH-P4 reference im- 
plementation). It is used to measure the raw performances 
of the generic communication layer. Vcl implements the 
Chandy-Lamport Algorithm 181 For global checkpointing of 
distributed applications. Vcausal implements a new causal 
message logging protocol. 
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3.1 Generic Architecture 

In the generic architecture, the MPI proccss does not 
connect directly to the othcr ones. It communicates with 
a generic communication daemon, through a pair of sys- 
tem pipes. These daemons are connected together and re- 
lay the communications. This separation is mainly due to 
checkpoint-related constraints. 

The daemon handles the effective communications, 
namely sending, receiving, reordering messages, establish- 
ing connections with all components of the system and de- 
tects failures. In each OF these routines, protocol depen- 
dant functions are called. The collection of all these func- 
tions is defined through a fault tolerance API and each pro- 
tocol implements this API (see next subsection). In order 
to reduce the number of system calls, communications are 
packed using iovec related techniques by the generic com- 
munication layer. The different communication channels 
are multiplexed using a single thread and the select system 
call. This common implementation of communications al- 
lows a fair comparison between the different protocols. 

Three other components are involved in fault tolerance 
protocols: the dispatcher, the checkpoint scheduler and the 
checkpoint server (see typical deployments in figure 2). All 
these components should be run on a reliable system (po- 
tentially the same stable machine) and a more detailed de- 
scription may be found in our previous papers on MPICH-V 
[4,61. 

3.2 Global checkpointing implementation 

The conclusion of our previous comparison [6] stated 
that a major drawback of the global checkpointing tech- 
niquc was the restart time after a single crash. This time 
is mainly due to the stress of the checkpoint servers. 

A strategy to reduce this stress is to use a simple local 
checkpoint image cache on each node and limit the access 
of the checkpoint servers during restart to the crashed prc- 
cesses only. Every process makes a local copy of the check- 
point image they send to the checkpoint servers (at the speed 
of the slowest component between the disk and the net- 
work, in order to limit the amount of memory used). When 
a restart occurs, instead of collecting their last checkpoint 
image from the checkpoint server, non-crashed processes 
access them from the local filesystem. 

Since every component does not connect to a single 
repository when a restart is triggered, special care has to 
be taken to ensure the coherence of the global image. The 
cache-coherence algorithm is implemented in the check- 
point scheduler, which computes an identifier of global 
coherent views. When a process has successfully check- 
pointed its state, it notifies the checkpoint scheduler, which 
validates the global view when every component has check- 

pointed (locally and remotely) its state. The implementa- 
tion of the Chandy-Lamport algorithm [XI, in the Vcl V- 
protocol, remains the same as the one presented in [ 6 ] .  The 
checkpoint image is taken transparently using the condor 
standalone checkpointing library [15]. 

3.3 Message logging implementation 

Pessimistic message logging techniques use a reliable 
component to store the causality of an initial execution. In 
order to ensure the completeness of this causality, every pes- 
simistic protocol does not allow the process to intluence the 
system until every previous nondeterministic event is safely 
logged. In an implementation where the reliable component 
is a remote process, this introduces a high network latency. 

In order to obtain a low latency, a process must be able 
to intluence the system at any time, without waiting for 
acknowledge. This may lead to lose relevant causality in- 
formation. To avoid this potential information lost, Causal 
Message Logging protocols attach causality information on 
all messages. 

A main drawback of causal message logging protocols is 
that the amount of causality information piggybacked with 
every message transmission may grow with the number of 
messages exchanged. In the previous architecture, the reli- 
able component used to log the causality information was 
a remote process called the event logger. In this improved 
version, we use the same component, as a protocol specific 
component, to reduce the amount of causality information 
added to messages. 

Roughly speaking, the protocol is the following (see fig- 
ure 3): when A receives a message from B @, the daemon 
of A associates a unique identifier to the reception (causality 
information) and sends asynchronously this causality infor- 
mation to the event logger. When A has to send a message 
0, thc causality information of all previous receptions is 
added to the message only if they have not been acknowl- 
edged by the event logger yet. When the event logger ac- 
knowledges some causality information 0. this information 
is discarded by the communication daemon of A. If A fails, 
it is restarted in its last checkpoint state by the dispatcher. 
It collects from the event logger and from every other alive 
nodes all the causality information and conforms its execu- 
tion to this information until i t  reaches the state preceeding 
the crash. Then, the execution continues normally. This 
protocol is implemented in the Vcausal protocol. 

Another improvment to reduce the number of transmit- 
ted causality is used in  the implementation. Each daemon 
remembers the last events it sends to or receive from a 
neighbor B. As there is a total order between the causal 
events generated by a single node A, no event created by 
the same node A preceding the last event have to be piggy- 
backed when sending to this neighbor B. ' 

118 



Figure 2. Typical deployment of MPICH-V for Vdummy, Vcl and Vcausal 
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for the causal logging protocol 

fithemet 1CiIMbiUs 
TCP I P4 I Vdummy 1 Vci I VcausaI I V2 
75.55 1 99.56 1 134.84 I 138.27 156.92 I 291.78 
Myrinet 2wO 
TCP I P? I V d u m y  I Vci I VausaI  I V? 
42.93 152 .96  I 94.22 I 98.96 I 112.31 I 183.38 
SCI 
TCP 1 P4 I Vdnmmy I VcI I Vcnuaal I VZ 
23.07 I 34.21 I 76.33 I 81.19 I 116.04 I 355.31 

4 Experiments 

4.1 Experimental conditions 

We present a set of experiments in order to evaluate the 
different components of the system. 

Ethernet experiments are run on a 32-nodes cluster. Each 
node is equipped with an AthlonXP 28W+ processor, run- 
ning at ZGHz, ICB of main memory (DDR SDRAM), and 
a 70GB IDE ATAIOO hard drive and a 100Mbit/s Ethernet 
Network Interface card. All nodes are connected by a sin- 
gle Fast Ethemet Switch. Myrinet experiments are run on 
a 8-nodes cluster. Each node is similar to Ethernet nodes 
but are equipped with Dual AthlonXP-MP 2200+ proces- 
sors, running at I.8GHz. Myrinet network is Myrinet2000 
connected by a single 8-ports Myrinet switch. SCI experi- 
ments are run on the same 32-nodes cluster as Ethernet ex- 
periments. All nodes are connected by SCI cards using a 
2D-toNs topology. 

All these nodes use Linux 2.4.20 as operating system. 
The tests and benchmarks are compiled with GCC (with Hag 
-03 )  and the PGI Fortran77 compilers. All tests are run in 
dedicated mode. Each measurement is repeated 5 times and 
we present a mean of them. 

The first experiments are synthetic benchmarks analyz- 
ing the individual performance of the subcomponents. We 
use the NetPIPE [I91 utility to measure bandwidth and la- 
tency. This is a ping pong test for several message sizes 
and small perturbations around these sizes. The second set 
of experiments is the set of kernels and applications of the 
NAS Parallel Benchmark suite [Z], written by the NASA 

NAS research center to test high performance parallel ma- 
chines. 

For all experiments, we consider a single checkpoint 
server connected to the rest of the system by the same net- 
work as the MPI traffic. While other architectures have been 
studied for checkpoint servers (distributed file systems, par- 
allel file systems), we consider that this system impacts the 
performance of checkpointing similarly for any fault toler- 
ant protocol. 

4.2 Fault Tolerant Framework performances 

To perform a fair comparison between all fault tolerant 
protocols, we have to identify the overhead sources. We de- 
fined a shared framework for all the fault tolerant protocols. 
The overhead related to this framework can be mesured us- 
ing the V-protocol Vdummy that does not provide any fault 
tolerance. We compare our framework without any fault 
tolerance with the reference implementation MPICH-P4 in 
order to summarize the framework related overhead. 

The figures 4 and 5 compares bandwidth and latency 
of the NetPIPE ping-pong benchmark for various protocols 
and networks. 

On the Ethernet network, Vdummy shows only a small 
overhead on bandwidth compared to P4. It shows a 30 per- 
cent increase in latency, this outlines the lack of a zero-copy 
implementation. 
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Myrinet and SCI experiments are performed using the 
TCP/IP emulation interface of the network cards. Because 

bandwidth is half the one of P4 on SCI network and latency 
is twice the one of P4 on SCI and Myrinet. On the Myrinet 
network, P4 does not reach good performances. We decided 
not to compare our implementation with P4 on Myrinet. 

On each network, the performance decreases induced by 
our framework is a constant multiplicative factor. Frame- 
work overhead is well identified and related to copy and 
computation between the emission of each network frame. 
This statement allows to identify which overhead is frame- 
work related and which is fault tolerant protocol related. 

We also validated performances of our framework and 
compared each fault tolerant protocol on the set of kemels 
and applications of the NAS parallel benchmark on Ether- 
net without checkpointing (figure 6). On latency driven tests 
like CG and MG the V-framework reaches the same perfor- 
mance as the reference implementation P4. On handwidth 
driven tests like BT, our framework reaches better perfor- 
mance than P4. This is due to architectural diflerences be- 
tween P4 and V that allow V to perform full duplex com- 
munications. 

Numbcrofndes 1 4 9 I 16 I 25 
Remoteonly 1 2384 23 17 I 24% I 21 I 1  
Localandremole I 2 3 8 6  1 2 3 1 4  1 2 4 9 2  1 2 4 1 7  

4.3 Optimizing global checkpointing and message 
logging 

4.3.1 Global checkpointing optimization 

We introduced in Vcl the new feature of performing local 
checkpointing overlapped with remote checkpointing. 

The figure 7 presents the impact of local checkpointing 
on the overall checkpointing performance of the BT class 
A benchmark with a single checkpoint server over Ethernet 
network. The overhead induced by local checkpointing is 
negligible compared to the total checkpoint time. 

Figure 8. Time (in seconds) to restart after an 
increasing number of failures for ET Class A, 
with or without local checkpointing. 

In figure 8 we compare the time to restart BT class A 
benchmark after an increasing number of failures for ch.cl 
(the non improved version of Chandy-Lamport) and Vcl 
with a single checkpoint server over the Ethernet network. 
Time to restart a single process of BT A 25 from a local 
checkpoint is 0.54s compared to 2.94s from a remote dedi- 
cated checkpoint server. On one hand, the time to restart in 
c h r l  is a linear factor of the total number of nodes. On the 
other hand, the time to restart in Vcl is a linear factor of the 
number of failed nodes: the time to restart non failed nodes 
from local checkpoint is totally overlapped by the time to 
restart failed nodes from remote checkpoint server. More- 
over the overhead of the checkpoint server is limited, as 
the number of nodes simultaneously requesting their check- 
point image is reduced. 

The use of a high performance network may remove 
the network bandwidth bottleneck related to remote check- 
pointing. However, a t  the checkpoint server side, the disk 
handwidth is shared between all concurrent checkpoints. 
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Figure 9. Ping-Pong latency comparison be- 
tween MPICH-Vdummy, MPICH-Vcausal and 
MPICH-V2 on Fast-Ethernet and Myrinet 2000 
networks. 

Thus, it is sensible to consider that local disk's bandwidth 
is higher than shared checkpoint server disk's bandwidth. 

4.3.2 Message logging optimization 

In figure 9 we compare the latency between V2 (pessimistic 
protocol) and Vcausal. The causal protocol latency is half 
the one of the pessimistic protocol. The acknowledge pro- 
tocol with the event logger in V2 introduces a three time 
higher latency compared with raw MPI communications 
(P4). On the one hand, as message logging is done asyn- 
chronously, it is possible that this acknowledge protocol is 
finished when the MPI application requests a send, induc- 
ing almost no latency. On the other hand, the event logger 
may introduce very high overhead when multiple comput- 
ing nodes are accessing i t  at the same time, leading to a 
very high latency. The latency values presented are average 
values over 5000 measurements. The differcnce around the 
average values varies up to 93 percent. This is due to simul- 
taneous requests to the event logger from multiple nodes, 
one of the request is delayed, and this node waits longer for 
it's acknowledge. 

In Vcausal, in this ping-pong test, for 90 percent of the 
exchange, the size of the message is increased by causality 
information of the last reception. For small messages this 
leads to double the size of mrssages. This induces a proto- 
col related overhead on latency in causal protocol, explain- 
ing that it does not reach the latency of raw MPI protocol. 

On the Myrinet network, differences between protocols 
are decreased by the constant I-copy implementation over- 
head. However the same behavior can he exhibited. 

In figure 4 we compare the bandwidth of all the protocols 
we present. The low bandwidth performance in the causal 
protocol is due to the computation of which causal events 
have to be piggybacked. 

Impact of Fault Frequency 
AT /I 5 M*8. rihumc, 1m 

1600 

E IM" I !  

Figure 10. Fault frequency impact on execu- 
tion time of BT B 25 nodes on Fast-Ethernet, 
using coordinated checkpoint or causal mes- 
sage logging as fault tolerant protocol. 

4.4 Global checkpointing versus message logging 
comparison 

The bandwidth and latency figures 4,5 present compari- 
son between Vcl, Vcausal, with Vdummy as the reference. 

As expected, the Chandy-Lamport algorithm does not in- 
duce any overhead on fault free execution. The latency of 
Vcl is very close to the one of Vdummy. Vcl reaches the 
same bandwidth as Vdummy. 

The Vcausal implementation induces a 13.6 percent in- 
crease in latency compared to Vcl on Ethernet, 13.5 percent 
on Myrinet and 42 percent on  SCI. The impact on band- 
width of the piggybacking computation is about I O  percent 
on each networks. 

The figure 6 compares Vcl, Vcausal, and Vdummy on 
the NAS benchmarks. Results for FT class B are not pre- 
sented as the benchmark exceeds memory requirement of 
our test platform, even for the P4 implementation. Vcl 
reaches the performance of Vdummy on all tests. Vcausal 
suffers from a performance decrease on fault free execution 
on kernel tests CG and MG, but reaches the same perfor- 
mance as Vdummy for all other tests. 

Vcausal is unable to successfully finish LU 32 bench- 
mark without checkpointing. This is due to the huge amount 
of memory used by sender-based log of message payload. 
In message log protocols, checkpoint frequency is related 
to garbage collecting of sender-based message payload. In 
Coordinated checkpoint it is only related to the expected 
fault frequency. 

The figure I O  compares fault frequency impact on exe- 
cution time when using whether coordinated checkpoint or 
causal message logging as fault tolerant protocol. This ex- 
periment consists in running BT B 25 and introduces faults. 
In Vcl, checkpoints are scheduled using a fixed period re- 
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lated to the expected fault frequency. Given a checkpoint 
period T and a checkpoint date T,, a fault is introduced on 
a random node at T, + 5, defining a fault frequency f. In 
Vcausal checkpoint is scheduled using a round robin policy. 
Faults are generated on a random nodc using the same fault 
frequency f .  

A similar comparison was performed in [6] between 
standard Chandy-Lamport algorithm (ch-cl implementa- 
tion) and pessimistic message logging protocol (V2 imple- 
mentation). This article outlines I )  a 40 percent overhcad of 
V2 compared to non checkpointed execution of ch.cl and 2)  
that remote restart overhead of c h x l  leads pessimistic mes- 
sage log to perform better at high fault frequency (more than 
0.002 faults per seconds). 

Current comparison between improved Chandy-Lamport 
and causal message logging, using the same application and 
experimental conditions, outlines a 20 percent overhead of 
Vcausal over a non checkpointed execution of Vcl, reduc- 
ing the fault free performance difference between message 
logging and coordinated checkpoint strategies. On the other 
hand, Vcl does not suffer from the high remote restart over- 
head. It has a better fault resiliencc than ch-cl and sup- 
ports higher fault frequencies. As a consequence, the cross- 
point between the two protocols appears at higher fault rates 
(more than 0.006 faults pcr seconds), even if causal protocol 
performs better than pessimistic ones without faults. How- 
ever, Vcl stills not ensure progression of the computation 
when reaching 0.012 faults per seconds, while causal proto- 
col stills perform at 50 percent of its fault free performance. 

' 

5 Conclusion 

Large scale cluster and Grid system raise the issue of 
tolerance to frequent and numerous faults. Since these 
systems are mostly programmed using MPI, the use of a 
fault tolerant MPJ implementation will become unavoid- 
able. Among the automaticltransparent fault tolerant ap- 
proaches, two main classes can he considered, using either 
coordinated checkpoint or message logging. It has been pre- 
viously proven that there is a crosspoint from which pes- 
simistic message logging performs better than coordinated 
checkpoint. The purpose of this paper was to study two op- 
timizations of coordinated checkpoint and message logging, 
in the potential perspective to find that one technique would 
always perform better. 

We have implemented a shared framework from the 
MPICH 1.2.5. From this framework we have implemented 
I )  coordinated checkpoint with the local checkpoint capa- 
bility and 2) causal message logging with asynchronous sta- 
ble component to store causality (MPICH-Vcl and MPICH- 
Vcausal respectively). After having validated the perfor- 
mance of our generic shared framework, we compared local 
checkpoint improved Chandy-Lamport implementation to 

remnte checkpoint standard Chandy-Lamport one (MPICH- 
CL), and causal message logging to pessimistic message 
logging (MPICH-V2) for various networks including Fast- 
Ethernet, Myrinet 2000 and SCI. We have demonstrated that 
recovery overhead of Vcl is significantly lower than ch.cl 
without any additional fault free overhead. We have demon- 
strated that latency overhead of Vcausal is reduced at the 
cnst of a slight bandwidth decrease comparcd to V2. We 
have demonstrated that the fault free performance differ- 
ence between Vcausal and Vcl is smaller than between V2 
and CL, and that Vcl tolerates higher fault frequency than 
ch-cl, but still does not reach fault resilience of message 
logging techniques due to checkpoint server stress during 
checkpoint. 

Due to better fault resilience, the minimal fault fre- 
quency from which message logging outperforms coordi- 
nated checkpoint is increased from 0.002 faults per seconds 
to 0.006 faults per seconds. If we consider an application 
with a larger data set of IGB, this crosspoint should appear 
at one fault every 9 hours. If we consider that real clusters's 
MTBF are greater than 9 hours, it appears that coordinated 
checkpoint are more appropriate in such environments. 

Improving the shared framework to perform more accu- 
rate experiments on high performances networks belongs to 
a set of planned experiments a) to find the crosspoint for 
high performance networks, h) to understand in practice 
(with real software and cluster) the impact of checkpoint 
servcr architecture and c) to use large number of nodes to 
understand the cost of the Chandy-Lamport algorithm by it- 
self over various or heterogeneous network configurations. 
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